流水號
30365
課號
EE5182
課程識別碼
921 U2590
無分班
- 3 學分
選修
電機工程學研究所
電機工程學研究所
選修- 陳和麟
- 搜尋教師開設的課程
電機資訊學院 電機工程學系
holinchen@ntu.edu.tw
- 明達館 718
02-33663595
- 五 2, 3, 4
明達231
3 類登記
修課總人數 180 人
本校 180 人
無領域專長
- 中文授課
- NTU COOL
- 備註
本校選課狀況
載入中- 課程概述本校同學希望旁聽課程請直接聯絡助教吳政宏 r11921036@ntu.edu.tw In this course, we will study various techniques for designing and analyzing algorithms. We will mainly focus on problems for which the exact algorithm is not known or not efficient enough and problems with resource constraints. Besides designing efficient algorithms, proving the performance guarantees is also a main topic of this course. In the first half of the semester, we will focus on approximation algorithms. Approximation algorithms are algorithms that find near-optimal solutions with provable performance guarantees in polynomial time. We will cover design techniques such as rounding and primal-dual algorithms. In the second half of the semester, we will focus on different topics in randomized algorithms. We will cover algorithm design techniques such as hashing, sampling, random walks, and derandomization.
- 課程目標本課程主要針對從事演算法研究的學生,提供演算法設計的技巧與未來學習的方向。
- 課程要求預修課程: 演算法、機率、離散數學、資料結構
- 預期每週課後學習時數
- Office Hour
星期三 10:00 - 12:00 星期四 10:00 - 12:00 星期五 12:00 - 13:00 TA office hours: 吳政宏, email: r11921036@ntu.edu.tw, office hour: Wed 10:00-12:00 MD709 李怡萱, email: r12921065@ntu.edu.tw, office hour: Thu 10:00-12:00 MD709
- 指定閱讀
- 參考書目Approximation Algorithms, Vazirani Design of Approximation Algorithms, Williamson and Shmoys Randomized Algorithms, Motwani and Raghavan
- 評量方式
40% 作業
約四次手寫作業
35% 期中考
25% 期末考
- 針對學生困難提供學生調整方式
調整方式 說明 上課形式 以錄影輔助
其他 由師生雙方議定
- 課程進度
第 0 週 *** 進度視教學狀況隨時調整 *** 2/23第 01 週 2/23 Course Overview, Knapsack Problem, PTAS/FPTAS 3/1第 02 週 3/1 Approximation Algorithms: Subset Sum, Bin Packing 3/8第 03 週 3/8 Linear Programming, ILP, LP-Relaxation 3/15第 04 週 3/15 Duality 3/22第 05 週 3/22 Primal-Dual Algorithms 3/29第 06 週 3/29 Greedy and Local Search Algorithms 4/5第 07 週 4/5 No class (spring break) 4/12第 08 週 4/12 Local Search Algorithms, Homework Solutions 4/19第 09 週 4/19 Midterm Exam (covering week 1 - week 8) 4/26第 10 週 4/26 Randomized Algorithm, Derandomization 5/3第 11 週 5/3 Hashing 5/10第 12 週 5/10 Markov Chain, Random Walk 5/17第 13 週 5/17 Counting and Sampling 5/24第 14 週 5/24 Counting, Homework Solutions 5/31第 15 週 5/31 Online Algorithms, Streaming Algorithms (Videos from last year's lectures only) 6/7第 16 週 6/7 Final Exam (covering week 10 - week 14)