流水號
83011
課號
IE5054
課程識別碼
546 U4040
無分班
- 3 學分
選修
工業工程學研究所 / 工學院院學士學位 / 奈米工程與科學博士學位學程 / 統計碩士學位學程 / 奈米工程與科學碩士學位學程
工業工程學研究所
工學院院學士學位
奈米工程與科學博士學位學程
統計碩士學位學程
奈米工程與科學碩士學位學程
選修- 藍俊宏
- 搜尋教師開設的課程
工學院 工業工程學研究所
jakeyblue@ntu.edu.tw
- 國青大樓 R122
02-33661571
個人網站
https://jakeyblue.github.io/
- 一 2, 3, 4
新402
2 類加選
修課總人數 42 人
本校 32 人 + 外校 10 人
- 2 個領域專長
- 英文授課
- NTU COOL
- 核心能力與課程規劃關聯圖
- 備註本課程以英語授課。
本校選課狀況
載入中- 課程概述Data analytics is increasingly recognized as a pivotal element across various sectors. This course aims to demystify prevalent jargon, including data mining, big data, artificial intelligence, machine learning, and deep learning, prevalent across diverse media platforms. We intend to dissect the foundational concepts associated with these buzzwords, in addition to exploring a spectrum of methodologies such as multivariate statistical inference, alongside unsupervised and supervised learning algorithms. Throughout the course, R or Python will serve as the instrumental tools, facilitating the analysis, synthesis, and application of these methodologies in real-world scenarios. This course is meticulously structured in a blended learning format, encompassing a variety of components: asynchronous video content for independent learning, interactive face-to-face discussions, practical homework exercises, and a culminating group project. Prospective participants are encouraged to attend the inaugural lecture to gauge the course's alignment with their academic and professional aspirations. Access codes for course registration will be issued post the initial session enrollment.
- 課程目標Students from this course shall learn to: 1. understand the data characteristics and the fitness of different algorithms; 2. pretreat and clean the data; 3. extract and select significant features; 4. explain the analytical results; 5. use R/Python for quick data analytics.
- 課程要求probability, statistics, linear algebra, and programming skills
- 預期每週課後學習時數
- Office Hour
TBD
- 指定閱讀
- 參考書目‧ Strang, G. (2006). Linear Algebra and Its Applications ‧ Montgomery, D. C., & Runger, G. C. (2014). Applied Statistics and Probability for Engineers ‧ Rencher, A. C., & Christensen, W. F. (2012). Methods of Multivariate Analysis ‧ Johnson, R., & Wichern D. (2014). Applied Multivariate Statistical Analysis ‧ Izenman A. J., 1st edition, Modern Multivariate Statistical Techniques ‧ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning ‧ Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning
- 評量方式
25% Homework
35% Mid-term Exam
37% Team Project
3% Particiation
- 針對學生困難提供學生調整方式
- 課程進度
Feb. 19第 1 週 Feb. 19 Review & Preview Feb. 26第 2 週 Feb. 26 Regression Analysis Mar. 04第 3 週 Mar. 04 Regression Analysis Mar. 11第 4 週 Mar. 11 Multivariate Statistical Inference Mar. 18第 5 週 Mar. 18 Dimension Reduction Techniques Mar. 25第 6 週 Mar. 25 Partial Least Squares Regression Apr. 01第 7 週 Apr. 01 Big Data Infrastructure × Team Building* Apr. 08第 8 週 Apr. 08 Mid-term Exam Apr. 15第 9 週 Apr. 15 Supervised Learning Algorithms Apr. 22第 10 週 Apr. 22 Supervised Learning Algorithms Apr. 29第 11 週 Apr. 29 Unsupervised Learning Algorithms May 06第 12 週 May 06 Unsupervised Learning Algorithms May 13第 13 週 May 13 Machine Learning Techniques May 20第 14 週 May 20 Deep Neural Nets May 27第 15 週 May 27 Deep Neural Nets Jun. 03第 16 週 Jun. 03 Project Presentation Day (Peer Review*) Jun. 07第 17 週 Jun. 07 Report Due