流行病學與生物統計計算

113-1 開課
  • 備註
    流預所 歡迎大學部高年級生選修. 大數據學程 歡迎大學部高年級生選修。拓析統計進階課程。大數據學程「程式資訊應用」領域選修。 公衛系 歡迎大學部高年級生選修,公衛系生物統計與健康資訊領域專長必修。 健統所 歡迎大學部高年級生選修。拓析統計進階課程。 統計碩士學位 拓析統計進階課程。生醫資訊與生物統計學領域選修課程之一。
  • 修課限制
    • 限學士班三年級以上限公衛學院學生(含輔系、雙修生)

  • 本校選課狀況

    載入中
  • 課程概述
    /*** 本課程不開放旁聽 ***/ 在多數的生物統計課程中,老師時常介紹理論模式,繼而以統計軟體 (如SAS與R) 來分析資料。然而,在這兩個部分的中間卻存在著一個黑盒子。為能連接理論與軟體分析報表,本課程將介紹在統計模式中所牽涉的數值計算過程。同學將學習到矩陣運算、數值分析、蒙地卡羅模擬等。本課程涵蓋如何從統計分布來建構概似函數、求得羅吉斯迴歸與卜瓦松迴歸裡的最大概似估計值、求得精確信賴區間 (exact confidence interval)、以及如何為一個研究主題設計蒙地卡羅模擬等。 In most biostatistics courses, instructors usually introduce theoretical models and then analyze data with statistical software such as SAS and R. However, there is a black box between these two parts. To link statistical theory to software output, we will introduce the numerical computation process involved in statistical models. Students will learn matrix operations, numerical analyses, Monte Carlo simulations, etc. We will teach how to construct a log-likelihood function according to a statistical distribution, obtain maximum likelihood estimates from a logistic regression and a Poisson regression, find exact confidence intervals, design Monte Carlo simulations for a given research topic, etc.
  • 課程目標
    /*** 本課程不開放旁聽 ***/ This course aims to inspire students’ interests in numerical computation regarding epidemiology and biostatistics and cultivate students’ critical thinking and logic in programming. This course is expected to facilitate students’ research in biostatistics, epidemiology, or related quantitative fields. It will also build students’ further understanding of quantitative epidemiology and biostatistics.
  • 課程要求
    /*** 本課程不開放旁聽 ***/ 同學需先修過至少一門的 (生物) 統計學或流行病學課程。 Prerequisite course: at least one course in biostatistics (or statistics) or epidemiology.
  • 預期每週課後學習時數
  • Office Hour
  • 指定閱讀
    課程講義
  • 參考書目
    1. Owen Jones, Robert Maillardet, and Andrew Robinson (2009). “Introduction to scientific programming and simulation using R”. Chapman & Hall/CRC. 2. Marcello Pagano and Kimberlee Gauvreau (2000). “Principles of Biostatistics”. 2nd edition. Duxbury Press.
  • 評量方式
    30%

    每週作業

    35%

    期中考

    35%

    期末考

  • 針對學生困難提供學生調整方式
  • 課程進度
    9/3第 1 週R 的安裝與起始 Install and start R
    9/10第 2 週函數程式編寫 Programming with functions
    9/17第 3 週中秋節 (放假日)
    9/24第 4 週物件型態,程式邏輯,與 R 的迴圈運算 R objects, programming logics, and R looping
    10/1第 5 週R的輸入輸出與繪圖 Input, output, and plotting with R
    10/8第 6 週靈巧的apply 家族函數與遞迴程式、矩陣運算指令 The clever “apply” family, recursive programming, commands for matrix operations
    10/15第 7 週求函數解與確切信賴區間 Find the root for a function; exact confidence intervals
    10/22第 8 週期中考
    10/29第 9 週建構概似函數 Construct a log-likelihood function
    11/5第 10 週為羅吉斯迴歸求解最大概似估計值 Find the maximum likelihood estimates for a logistic regression
    11/12第 11 週為卜瓦松迴歸求解最大概似估計值 Find the maximum likelihood estimates for a Poisson regression
    11/19第 12 週現代統計計算:蒙地卡羅模擬 (區間估計) Modern statistical computing: Monte-Carlo simulations (Interval estimates)
    11/26第 13 週現代統計計算:蒙地卡羅模擬 (點估計) Modern statistical computing: Monte-Carlo simulations (Point estimates)
    12/3第 14 週現代統計計算:蒙地卡羅模擬 (型一誤差率與檢力) Modern statistical computing: Monte-Carlo simulations (Type I error rates and power)
    12/10第 15 週現代統計計算:排列法 Modern statistical computing: Permutation
    12/17第 16 週期末考