流水號
40593
課號
CommE5052
課程識別碼
942 U0660
無分班
- 3 學分
選修
電機工程學研究所 / 智慧醫療學分學程 / 電信工程學研究所
電機工程學研究所
智慧醫療學分學程
電信工程學研究所
選修- 王鈺強
- 搜尋教師開設的課程
電機資訊學院 電信工程學研究所
ycwang@ntu.edu.tw
- BL-529
02-33669968
個人網站
http://vllab.ee.ntu.edu.tw/
- 二 2, 3, 4
博理113
2 類加選
修課總人數 100 人
本校 98 人 + 外校 2 人
無領域專長
- 中文授課
- NTU COOL
- 核心能力與課程規劃關聯圖
- 備註智慧醫療學程電資院所屬「影像」領域。
本校選課狀況
載入中- 課程概述Computer vision has become ubiquitous in our society, with a variety of applications in image/video search and understanding, medicine, drones, and self-driving cars. As the core to many of the above applications, visual analysis such as image classification, segmentation, localization and detection would be among the well-known problems in computer vision. Recent developments in neural networks (a.k.a. deep learning) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into the details of deep learning architectures, with a particular focus on understanding and designing learnable models for solving various vision tasks.
- 課程目標?This course will expose students to cutting-edge research — starting from a refresher in basics of machine learning, computer vision, neural networks, to recent developments. Each topic will begin with instructor lectures to present context and background material, followed by discussions and homework assignments, allowing the students to develop hand-on experiences on deep learning techniques for solving practical computer vision problems.
- 課程要求Engineering Mathematics (e.g., linear algebra, probability, etc.), Machine Learning (strongly suggested but optional)
- 預期每週課後學習時數
- Office Hour
- 指定閱讀
- 參考書目
- 評量方式
- 針對學生困難提供學生調整方式
- 課程進度
09/03第 1 週 09/03 Course Logistics & Registration; Intro to Neural Nets 09/10第 2 週 09/10 Convolutional Neural Networks & Image Segmentation 09/17第 3 週 09/17 No Class 09/24第 4 週 09/24 Generative Models (I) - AE, VAE & GAN 10/01第 5 週 10/01 Guest Lecture 10/08第 6 週 10/08 Generative Models (II) - Diffusion Model 10/15第 7 週 10/15 Recurrent Neural Networks & Transformer 10/22第 8 週 10/22 Vision & Language Models 10/29第 9 週 10/29 Unlearning, Debiasing, and Interoperability 11/05第 10 週 11/05 Multi-Modal Learning 11/12第 11 週 11/12 Parameter-Efficient Finetuning; Efficient Deep Learning 11/19第 12 週 11/19 3D Vision 11/26第 13 週 11/26 Transfer & Adversarial Learning 12/03第 14 週 12/03 Federated Learning 12/10第 15 週 12/10 Progress Check for Final Projects 12/26 Thu第 17 週 12/26 Thu Final Project Presentation (1:30pm-5pm)