流水號
77871
課號
HDAS5002
課程識別碼
855 U0020
無分班
- 2 學分
選修
公共衛生學系 / 健康數據拓析統計研究所 / 台灣大學遠距教學課程 / 健康大數據學分學程 / 統計碩士學位學程 / 生物統計學程
公共衛生學系
健康數據拓析統計研究所
台灣大學遠距教學課程
健康大數據學分學程
統計碩士學位學程
生物統計學程
選修- 林菀俞
- 搜尋教師開設的課程
公共衛生學院 公共衛生碩士學位學程
linwy@ntu.edu.tw
- 公衛學院 樓 室
02-33668106
個人網站
http://homepage.ntu.edu.tw/~linwy/
- 四 6, 7
公衛101
3 類登記
修課總人數 300 人
本校 300 人
領域專長
生物統計與健康資訊
- 中文授課
- NTU COOL
- 核心能力與課程規劃關聯圖
- 備註非同步遠距教學。歡迎大學部高年級生選修。
本校選課狀況
載入中- 課程概述/* 本課程不開放旁聽,5/30 與 6/6 下午 1:20-3:10 於公衛 101 講堂實體上課,其它週皆為非同步遠距教學 */ 在生物醫學領域,研究者常需處理長期追蹤的資料,例如:分析病人數次回診的血壓值。由於忽略各筆觀測值之間的相依性,傳統的廣義線性模式並不能直接使用。於本門課中,我們將介紹隨機效應模式(random effects models)、廣義估計方程式(generalized estimating equations)、廣義線性混合模式(generalized linear mixed effects models)與轉銜模式(transition models)。除介紹統計理論模式外,將搭配統計軟體SAS或R來處理重複測量的資料。 In the Biomedical field, we usually need to deal with longitudinal data, say, the blood pressure levels measured at several clinical visits. The conventional generalized linear models cannot be directly used because of ignoring the dependence among measurements. This course will introduce random effects models, generalized estimating equations (GEEs), generalized linear mixed effects models (GLMMs), and transition models. In addition to statistical modeling, we will teach how to use SAS or R to analyze longitudinal data.
- 課程目標/* 本課程不開放旁聽,5/30 與 6/6 下午 1:20-3:10 於公衛 101 講堂實體上課,其它週皆為非同步遠距教學 */ 於此課程結束,同學預期將能 At the end of the course, the students are expected to A具備自行研讀統計方法文獻的能力,並有能力重複文獻當中統計分析的結果,以及辨別及校正常見的統計分析錯誤。 Read, understand, and reproduce the results in statistical literature, and to find and correct common mistakes when performing statistical analyses. B能使用圖表協助資料的呈現,並能了解、描述、執行不同的統計推論,如估計與檢定等分析工具,並能清楚說明適用之時機。 Use graphics and tables for data representation, and to understand, describe, and conduct different statistical procedures.
- 課程要求同學需先修過至少一門的 (生物) 統計學或流行病學課程。 Prerequisite course: at least one course in biostatistics (or statistics) or epidemiology.
- 預期每週課後學習時數
- Office Hour
每週一下午 2-3 點 2-3 pm each Monday.
- 指定閱讀課程講義 Teachers' handouts
- 參考書目1. Analysis of Correlated Data with SAS and R, 3rd edition. Shoukri, M. M. and Chaudhary M. A. (2007). Chapman & Hall/CRC. 2. Diggle, P.J., Heagerty, P.J., Liang, K.Y., & Zeger, S.L. (2002). Analysis of Longitudinal Data. 2nd Ed. Oxford University Press.
- 評量方式
50% Weekly assignment and homework
每週指定作業
50% Final oral and written report
期末口頭與書面報告
- 針對學生困難提供學生調整方式
調整方式 說明 上課形式 以錄影輔助
- 課程進度
2/22第 1 週 2/22 重複測量與相依性資料導論 (Introduction to repeated measurements and correlated data) 2/29第 2 週 2/29 隨機效應模式 (Random effects models) 3/07第 3 週 3/07 混合效應模式 (Mixed effects model: G-side analysis) 3/14第 4 週 3/14 混合效應模式 II (Mixed effects model: G-side analysis II) 3/21第 5 週 3/21 混合效應模式 III (Mixed effects model: statistical inference for regression parameters) 3/28第 6 週 3/28 混合效應模式:R-side分析 (Mixed effects model:R-side analysis) 4/04第 7 週 4/04 春假 (Spring break) 4/11第 8 週 4/11 重複測量之模式診斷 (Diagnostics for repeated measurements) 4/18第 9 週 4/18 廣義線性模式 (Generalized linear model) 4/25第 10 週 4/25 廣義估計方程式(GEE)之統計推論 (Statistical inference in GEE) 5/02第 11 週 5/02 廣義估計方程式(GEE)之穩健變異數估計 (The robust variance estimator in GEE) 5/09第 12 週 5/09 廣義線性混合模式 I (Generalized linear mixed effects model I) 5/16第 13 週 5/16 廣義線性混合模式 II (Generalized linear mixed effects model II) 5/23第 14 週 5/23 轉移模式 (Transition model) 5/30第 15 週 5/30 期末報告文獻討論-GEE vs. GLMM (Paper discussion: Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection) 6/6第 16 週 6/6 期末報告文獻討論-Transition Model vs. Mixed Effects Model (Paper discussion: Predicting hemoglobin levels in whole blood donors using transition models and mixed effects models)