機器學習與環境資料分析

112-2 開課
  • 流水號

    80000

  • 課號

    BSE5182

  • 課程識別碼

    602 U3230

  • 班次 01
  • 3 學分
  • 選修

    生物環境系統工程學系 / 生物環境系統工程學研究所 / 統計碩士學位學程

      選修
    • 生物環境系統工程學系

    • 生物環境系統工程學研究所

    • 統計碩士學位學程

  • 胡明哲
  • 三 7, 8, 9
  • 農工十

  • 2 類加選

  • 修課總人數 20 人

    本校 20 人

  • 無領域專長

  • 英文授課
  • NTU COOL
  • 核心能力與課程規劃關聯圖
  • 備註
    本課程以英語授課。
  • 本校選課狀況

    載入中
  • 課程概述
    The science of machine learning plays a key role in the fields of statistics, data mining and artificial intelligence, intersecting with areas of engineering and other disciplines. This course describes some of the most important techniques of machine learning and environmental data analysis.
  • 課程目標
    (1) Introduction (2) Overview of Supervised Learning (3) Linear Methods for Regression (4) Linear Methods for Classification (5) Basis Expansions and Regularization (6) Kernel Smoothing Methods (7) Model Assessment and Selection (8) Model Inference and Averaging (9) Additive Models, Trees, and Related Methods (10) Boosting and Additive Trees (11) Neural Networks (12) Support Vector Machines and Flexible Discriminants (13) Prototype Methods and Nearest-Neighbors (14) Unsupervised Learning (15) Random Forests (16) Ensemble Learning
  • 課程要求
    Midterm exam, Homework, Presentation, Final project
  • 預期每週課後學習時數
  • Office Hour
    星期四14:00 - 17:00
  • 指定閱讀
    The Elements of Statistical Learning/ Trevor Hastie, Robert Tibshirani, Jerome Friedman/ Springer
  • 參考書目
  • 評量方式
    30%

    Final project

    40%

    Midterm exam & Homework

    30%

    Presentation

    04/10

  • 針對學生困難提供學生調整方式
  • 課程進度
    02/21第 1 週Introduction
    02/28第 2 週*** No class (National Holiday)
    03/06第 3 週(3) Linear Methods for Regression: Regression, Ridge, Lasso
    03/13第 4 週(4) Linear Methods for Classification: Linear Discriminant Analysis, Logistic, Separating Hyperplane {*Presentation: 4.3 LDA}
    03/20第 5 週(5) Basis Expansion and Regularization {*Presentation: 5.9 Wavelet Smoothing}
    03/27第 6 週(7) Model Assessment and Selection {*Presentation: 7.11 Bootstrap Methods}
    04/03第 7 週(8) Model Inference and Averaging: Bayesian, Expectation-Maximization algorithm, Markov chain Monte Carlo, Bagging {*Presentation: 8.6 MCMC}
    04/10第 8 週Midterm exam
    04/17第 9 週(9) Additive Models, Trees, and Related Methods: Decision tree {*Presentation: 9.2 Tree-based methods}
    04/24第 10 週(12) Support Vector Machines and Flexible Discriminants {*Presentation: 12.2 Support Vector classifier}
    05/01第 11 週(14) Unsupervised Learning: Cluster analysis, Self-organizing maps, Principal component analysis {*Presentation: 14.5 Principal Components}
    05/08第 12 週(14) Unsupervised Learning: Multidimensional Scaling, Isomap {*Presentation: 14.9 Isometric feature mapping, ISOMAP}
    05/15第 13 週Final project
    05/22第 14 週(A) 15-min (ppt) presentation for Final project
    05/29第 15 週*** No class
    06/04第 16 週(B) Poster session and 5-min (poster) presentation for final project: * Time: Tuesday, June 4th, 12:20-14:20 * Location: Shih Sun-Fu meeting room (施孫富會議室)